Cycle C_{3} Related one point union Product cordial graphs

Mukund Bapat ${ }^{1}$

Abstract

In this paper we discuss one point union graphs obtained from cycle related graphs. We show that $\mathrm{G}^{(k)}$ is product cordial where $\mathrm{G}=\mathrm{FL}\left(\mathrm{C}_{3}\right)$, , bull of C_{3}, crown of C_{3}, double crown of $\mathrm{C}_{3}, \mathrm{C}_{3}{ }^{++}$, tail $\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right), \mathrm{C} 3$ attached with 2 pendent edges attached at adjacent vertices and show them to be Product cordial under certain conditions.

Key words: labeling, cordial, product, wheel, crown. tail graph.

Subject Classification: 05C78

Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [8], A dynamic survey of graph labeling by J.Gallian [7] and Douglas West.[8]. I.Cahit introduced the concept of cordial labeling [6].There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [9] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to $\{0,1\}$ such that if each edge uv is assigned the label $f(u) f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 , and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a product cordial labeling is called a product cordial graph. We use $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $e_{f}(0,1)=(x, y)$.

A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian.We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU K1,n; Wm UPn; Wm UCn; the total graph of Pn (the total graph of Pn has vertex set V (Pn) UE(Pn) with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $\mathrm{C}_{\mathrm{n}}{ }^{(\mathrm{t})}$, the one-point union of t copies of C_{n}, provided t is even or both t and n are even; $K 2+m K 1$ if and only if m is odd; $C_{m} \cup P_{n}$
 when n is even; and $P 2 n$ if and only if n is odd. They also prove that $K_{m, n}(m, n>2), P_{m} \times P_{n}(m, n>2)$ and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then $q=6(p-1)(p+1) / 4+1$. In this paper We show that one point union of $\mathrm{G}=\mathrm{FL}\left(\mathrm{C}_{3}\right)$, bull of C_{3}, crown of C_{3}, double crown of $\mathrm{C}_{3}, \mathrm{C}_{3}{ }^{++}$, tail($\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right)$, C_{3} attached with 2 pendent edges attached at adjacent vertices and show them to be Product cordial under certain conditions.

Preliminaries:

3.1

Fusion of vertex. Let G be $\mathrm{a}(\mathrm{p}, \mathrm{q})$ graph. Let $\mathrm{u} \neq \mathrm{v}$ be two vertices of G . We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p - 1 vertices and at least $q-1$ edges. If $u \in G_{1}$ and $v \in G_{2}$, where G_{1} is $\left(p_{1}, q_{1}\right)$ and G_{2} is $\left(p_{2}, q_{2}\right)$ graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_{1}+p_{2}-1$ vertices and $q_{1}+q_{2}$ edges. Sometimes this is referred as " u is identified with". The concept is well elaborated in D. West [10].
3.2 Crown graph. It is $C_{n} \odot K_{2}$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $\mathrm{G}_{\mathrm{K}} \odot \mathrm{K}_{2}$. It has a pendent edge attached to each of it's vertex. If G is (p, q) graph then crown (G) has $q+p$ edges and $2 p$ vertices. 3.3

Flag of a graph G denoted by $F L(G)$ is obtained by taking a graph $G=G(p, q)$.At suitable vertex of G attach a pendent edge.It has $p+1$ vertices and $q+1$ edges.
$3.4 \quad G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If

G is a (p, q) graph then $\mid \mathrm{V}\left(\mathrm{G}_{(\mathrm{k})} \mid=\mathrm{k}(\mathrm{p}-1)+1\right.$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{k} . \mathrm{q}$
3.5 A bull graph bull(G) was initially defined for a C_{3}-bull.It has a copy of G with an pendent edge each fused with any two adjacent vertices of G . For G is $a(p, q)$ graph, bull (G) has $p+2$ vertices and $q+2$ edges.
3.6 A tail graph (also called as antenna graph) is obtained by fusing a path p_{k} to some vertex of G. This is denoted by tail $\left(G, P_{k}\right)$. If there are t number of tails of equal length say $(k-1)$ then it is denoted by $\operatorname{tail}\left(G, \mathrm{tp}_{\mathrm{k}}\right)$. If G is a (p, q) graph and a tail P_{k} is attached to it then $\operatorname{tail}\left(\mathrm{G}, \mathrm{P}_{\mathrm{k}}\right)$ has $\mathrm{p}+\mathrm{k}-1$ vertices and $\mathrm{q}+\mathrm{k}-1$ edges.

Main Results:
4.1 Theorem 1. Let G' $=$ $\mathrm{FL}\left(\mathrm{C}_{3}\right)$. Then $\mathrm{G}=\mathrm{G}^{\prime}(\mathrm{k})$ is product cordial iff k is congruent to $(2 \bmod 4)$. Proof: There are different structures possible on G depending on the vertex of G^{\prime} (vertex common to all copies) used to obtain G. From fig 4.1 it follows that there are three structures possible on G by taking one point union on vertex a, b or at c. The point of fusion is ' x '.

In structure 1 type A is used and the vertex common to all graphs is x whose label is ' 1 '. 2 type B is used and the vertex common to all graphs is x whose label is ' 1 '.

In structure is used and the vertex common to all graphs is x whose label is ' 1 '. In structure 3 type B number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{x}, 3 \mathrm{x}+1)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{x}, 4 \mathrm{x})$ for $\mathrm{G}=\left(\mathrm{G}^{\prime}\right)^{(2 x)}$. \#

Theorem 2. Let $\mathrm{G}^{\prime}=$ bull($\left.\mathrm{C}_{3}\right)$. Then $\mathrm{G}=\mathrm{G}^{\prime(k)}$ is product cordial iff k is congruent to $(2 \bmod 4)$.
Proof: One can see that there are three possible non-isomorphic structures on the graph G.

Fig 4.5 points for pairwise non isomorphic $\mathrm{G}^{(\mathrm{k})}$

Fig 4.8 : labeled copy of $\left(\operatorname{Bull}\left(\mathrm{C}_{3}\right)^{(2 \mathrm{x})}\right)$: $\mathrm{v}_{\mathrm{f}}(0,1)=(4,5) ; \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 4.7: labeled copy of $\left(\operatorname{Bull}\left(\mathrm{C}_{3}\right)^{(2 \mathrm{x})}\right)$: $\mathrm{v}_{\mathrm{f}}(0,1)=(4,5) ; \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Define $f:$
We can take one point union on any of the three vertices as shown in figure 4.5 . $V(G) \rightarrow\{0,1\}$ as follows. Using f we get labeled copies as shown in Type A, Type B, type C, type D. For $k=1$ and $k=2$ figures above explains the matter. When $k=2 x$ we have to repeatedly fuse respective type of labeling for x times at
vertex z, vertex y or at vertex d to obtain $G^{\prime(2 x)}$. The label number distribution is $v_{f}(0,1)=(4 x, 4 x+1) ; e_{f}(0,1)=(5 x, 5 x)$.To obtain the labeled copy of $\mathrm{G}^{\prime(2 x+1)}$ first obtain labeled copy of $\mathrm{G}^{\prime(2 x)}$. With this fuse type A label at vertex d on it with vertex d of $G^{\prime(2 x)}$,(obtained from type C label) fuse type A label at vertex z on it with vertex z of $G^{\prime(2 x)}$, (obtained from type B label) fuse type A label at vertex y on it with vertex y of $G^{\prime(2 x)}$. (obtained from type D label). Thus We get a labeled copy of $\mathrm{G}^{\prime(2 x+1)}$. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(4 \mathrm{x}+3,4 \mathrm{x}+2) ; \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{x}+5,5 \mathrm{x}=5)$. Thus the graph is having product cordial label.

Theorem 4.3 One point union of k copies of $\mathrm{C}_{3}{ }^{+}, \mathrm{G}=$ $\left(C_{3}{ }^{+}\right)^{(k)}$ is product cordial graph for all k provided the point common to all copies is the pendent vertex and common point is degree three then k is equal to 1 or even number only.

Proof: From figure it follows that on $\mathrm{C}_{3}{ }^{+(k)}$ there are only two structures possible up to isomorphism

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. Using f we get labeled copies of $\mathrm{G}^{\prime(2)}$ as shown in fig 4.11 and 4.12 , fig 4.13. When $\mathrm{k}=$ 1 Use type C label. S
structure 1 . The common point is vertex ' b '. First obtain labeled copy of G for $k=2 x$. This is done by fusing type B label at point b for $x-1$ times. The resultant graph is $C_{3}{ }^{+(2 x)}$ and label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 x, 5 x+1)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(6 x, 6 x)$. To obtain a labeled copy for $k=2 x+1$ first obtain labeled copy for $k=2 x$. Append it with type C label at vertex b. The resultant graph is $C_{3}+(2 x+1)$ and label number distribution is $v_{f}(0,1)=(5 x+3,5 x+3) ; e_{f}(0,1)=(6 x+3,6 x+3)$.

For k is odd number greater than 1 , if we have to take union point on G as pendent vertex then if it's label is ' 0 ' then it produces $e_{f}(0)$ greater than 2 by $e_{f}(1)$. If we label the common vertex as ' 1 ' then also condition on edges is not satisfied. When $k=2 x$ fuse the type A labeling with type A label at point ' a ' for ($x-1$) times to get G. The resultant graph is $C_{3}{ }^{+(2 x)}$ and label number distribution is $v_{f}(0,1)=(5 x, 5 x+1) ; e_{f}(0,1)=(6 x, 6 x)$. That completes the proof. \# Theorem 4.4 Let G^{\prime} be Tail $\left(C_{3}, 2 P_{2}\right)$ obtained from attaching two pendent edges at a vertex of C_{3}, then $G=\left(G^{\prime}\right)^{(K)}$ is product cordial for all k and all pairwise non-isomorphic structures obtained by taking different vertices on G^{\prime} as common point.

Proof: From fig 4.13 it is clear that we can take one point union at five points but only at three points vertex a, vertex b, vertex c results in pairwise non isomorphic structures.

Fig 4.14 Three structures at three points a, b, c.

Fig $4.5\left(G^{\prime}\right)^{(2)} v_{f}(0,1)=(4,5) ; e_{f}(0,1)=(5,5)$

Fig 4.16: $(G)^{(1)} v_{f}(0,1)$
$=(2,3) ; e_{f}(0,1)=(3,2)$

Define $f: V(G) \rightarrow\{0,1\}$ as follows. Using f we get labeled copies of $G^{\prime 2}$ as Type A, Type B, Type C and when $k=1$ we have Type D label. To obtain a labeled copy of $G^{\prime(k)}$ we first obtain a labeled copy of $G^{\prime(2 x)}$.In structure 1 'a' is the common point to all copies of G^{\prime}. We fuse Type A label repeatedly for ($\mathrm{x}-1$) times to obtain a labeled copy of $\mathrm{G}^{\prime(2 x)}$. In structure 2 ' b ' is the common point to all copies of G ' we fuse Type C label repeatedly for ($x-1$) times to obtain a labeled copy of $\mathrm{G}^{\prime(2 x)}$. In structure $3^{\prime} c^{\prime}$ is the common point to all copies of G^{\prime} we fuse Type B label repeatedly for ($x-1$) times to obtain a labeled copy of $\mathrm{G}^{\prime(2 x)}$. To obtain labeled copy of $\mathrm{G}^{\prime(2 x+1)}$ fuse a copy of type D label at respective point on it (vertex a for structure 1 or vertex b for structure 2 or vertex c for structure 3) with $G^{\prime(2 x)}$. In all cases we get label number distribution as follows: When $k=2 x$ we have, $v_{f}(0,1)=(4 x, 4 x+1) ; e_{f}(0,1)=(5 x, 5 x)$ and when $k=2 x+1$ we have $v_{f}(0,1)=(4 x+2,4 x+3)$; $e_{f}(0,1)=(5 x+3,5 x+2)$. Thus the family of graphs is product cordial. Theorem 4.5 Let G^{\prime} be a graph obtained from cycle C_{3} by attaching two pendent vertices each at two vertices of C_{3}. Let G be the one point union of G^{\prime} is given by $G=G^{\prime}\left({ }^{(k)}\right.$.Then G is product cordial. Proof: There are three possible pair wise non- isomorphic structures on G'.Structure 1 is obtained if vertex a is the common point on G. Structure 2 is obtained if vertex b is the common point on G. Structure 3 is obtained if vertex a is the common point on G. This is shown in figure 4.18 . Define $\mathrm{f}: V(G) \rightarrow\{0,1\}$ as follows. Using f we get labeled copies of G^{\prime} as Type A and Type B. Both are product cordial. For all three structures we use Type A label on G when k is of type $2 x+1$.for $x=0,1,2$. We use type B label when k is of type $2 x . x=1,2$, .In all the three structures the label number distribution is $v_{f}(0,1)=(3+6 x, 4+6 x) ; e_{f}(0,1)=(4+7 x$, $3+7 x)$ for $k=2 x$. And when $k=2 x+1$ we have $v_{f}(0,1)=(6 x, 6 x+1) ; e_{f}(0,1)=(7 x, 7 x)$.

Fig 4.19 three structures at vertices ' a ', ' b^{\prime}, ' c '

Fig 4.21: $\mathrm{v}_{\mathrm{f}}(0,1)=$
$(4,3) ; e_{f}(0,1)=$ (
$4,3)$:

This shows that the graph is product cordial. Also the function f defined is not vertex sensitive in the sense that the same function f works for all structures.

Theorem 4.5 Let G' be a graph obtained from cycle C_{3} by fusing two pendent vertices each at each vertex of $\mathrm{C}_{3} . \mathrm{G}=\mathrm{G}^{\prime}{ }^{(\mathrm{k})}$ is product cordial on all structures .

Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. On using f we get two types of labeled copies of G' type A and Type B namely. figure 4.21 explains that there are two nonisomorphic structures on G^{\prime}

Fig 4.23: $v_{f}(0,1)=$
$(4,5) ; \mathrm{e}_{\mathrm{f}}(0,1)=(5,4)$:

Fig 4.24: $\mathrm{v}_{\mathrm{f}}(0,1)=$
$(4,5) ; e_{f}(0,1)=(4,5)$:

When k is of type $k=2 x+1 ; x=0,1,2, .$. Use type A label. When $k=2 x ; x=1,2, .$. use Type B label to obtain G.For all possible two structures the label number distribution is is $v_{f}(0,1)=(4+8 x, 5+8 x)$; $e_{f}(0,1)=(5+9 x, 4+9 x)$ for $k=2 x$. And when $k=2 x+1$ we have $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}+1) ; \mathrm{e}_{\mathrm{f}}(0,1)=(9 \mathrm{x}, 9 \mathrm{x})$. This completes the proof.

Conclusions: In this paper one point union of C_{3} related graphs are discussed and are shown to be product cordial. We show that

1) $\quad G^{\prime}=F L\left(C_{3}\right)$. Then $G=G^{\prime}(k)$ is product cordial iff k is congruent to (2
$\bmod 4) \quad 2) \quad G^{\prime}=\operatorname{bull}\left(C_{3}\right)$. Then $G=G^{\prime(k)}$ is product cordial iff k is congruent to (2
$\bmod 4)$. 3) One point union of k copies of $C_{3}{ }^{+}, G=\left(C_{3}\right)^{(k)}$ is product cordial graph for all k provided the point common to all copies is the pendent vertex and if common point is degree three then k is equal to 1 or even number only.

Let G^{\prime} be Tail $\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right)$ obtained from attaching two pendent edges at a vertex of C_{3}, then $\mathrm{G}=\left(\mathrm{G}^{\prime}\right)^{(\mathrm{K})}$ is product cordial for all k and all pairwise non-isomorphic structures obtained by taking different vertices on G^{\prime} as common point. 5) G' be a graph obtained from cycle C_{3} by fusing two pendent vertices each at each vertex of $\mathrm{C}_{3} . \mathrm{G}=\mathrm{G}^{\prime(\mathrm{k})}$ is product cordial on all structures.

Thus it is interesting to study the cycles with pendent edges fused at some or all vertices of it for product cordiality.

References:

[1] Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore ,110-115
[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT
[3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 july-Dec 2018.
[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue
[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.
[6] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi
[7] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016
[8] Harary, Graph Theory, Narosa publishing, New Delhi
[9] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155-163, 2004.
[10] Douglas West,
Introduction to graph Theory, Pearson Education Singapore.
${ }^{1}$ Bapat Mukund V.

At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

